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Abstract 

 

 Repeated measures analysis is an important tool for educators committed to evaluating 

the performance of their students and courses. While evaluations can be performed using a series 

of t-tests, repeated measures provides practitioners and researchers a more sophisticated tool to 

analyze the impact of education over time or interventions that employ concurrent tests to 

measure a particular set of knowledge, skills, or attitudes. This paper provides educators with the 

information they need to choose between and interpret results based on the univariate and 

multivariate approach to repeated measures analyses. It also serves to explain the sphericity 

assumption and its impact on repeated measures designs. 
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Introduction 

 

In order to evaluate learning programs, relevant skills, knowledge, and attitudes from 

program participants are often measured multiple times (Kirkpatrick & Kirkpatrick, 2006). For 

example, participants may be measured on their ability to perform a particular skill: (a) before 

taking a course (i.e., pre), (b) immediately after completing a course (i.e., post and retro), and (c) 

one month after completing a course (i.e., follow-up). To determine if there is a statistical or 

practical difference between these measurements, a series of t-tests could be conducted (e.g., 

post-pre, after-post, follow-up-pre). However, the results from such a procedure would be 

difficult to collectively interpret as the process does not provide for a single omnibus test (R. 

Henson, personal communication, April 19, 2006). Additionally, the process inflates familywise 

Type I error rate. This means that the reported probability levels would actually overestimate the 

statistical significance of the mean differences (Hinkle, Wiersma, Jurs, 2003). 

A more appropriate technique to analyze three or more measurements is the repeated 

measures design (Maxwell & Delaney, 2004). Repeated measures designs are also called within-

subjects designs (Girden, 1992). In the case where the design contains a between-subjects factor 

in addition to a within-subjects factor, the design may be called a mixed-model, randomized 

block, or a split-plot design (Lamb, 2003). This paper presents a within-subjects repeated 

measures design with one within-subjects factor and no between-subjects factor (i.e., one-way 

within-subjects design). Readers interested in more advanced repeated measures designs are 

directed to Maxwell and Delaney (2004) and Stevens (2002). 

Two approaches for implementing a one-way within-subjects design are discussed: (a) 

univariate, and (b) multivariate. Before presenting the two approaches, advantages and 

disadvantages of repeated measures are reviewed as well as the underlying statistical 

assumptions for the two techniques. The paper concludes by summarizing the differences 

between the univariate and multivariate approaches. 

 

Advantages and Disadvantages 

 

Advantages 

Maxwell and Delaney (2004) cited two advantages of within-subjects design: (a) sample 

size and (b) precision. In the case of a repeated measures design, each subject contributes n 

scores, where n equals the number of measurements. In the example previously depicted, n 

equals 4. As a result of each subject contributing n scores, the number of subjects needed to 

achieve a certain level of statistical power is often much lower in within-subjects designs than in 

between-subject designs where participants contribute only one score on the dependent variable 

(Maxwell & Delaney). Venter and Maxwell (1999) showed that in the case of a two-level design, 

the total number of subjects NW needed for the within-subjects design is related to NB, the total 

number of subjects in the between-subject design, as follows: 

NW = NB (1 – ρ)/2      (1) 

where ρ is the population correlation between scores at the two levels of the within-subjects 

design. Table 1 further illustrates the sample size benefits of a one-way two-level repeated 

measures design.  

<Insert Table 1 about here> 

It is important to note that Venter and Maxwell’s (1999) formula relies on compound 

symmetry and is therefore most applicable to the univariate approach to repeated measures. 
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However, in the case of a two-level design, the univariate and multivariate approaches are 

identical (Maxwell & Delaney, 2004). Therefore, the sample size benefits of a one-way two-level 

repeated measures design are identical for both repeated measures techniques (i.e., univariate and 

multivariate). A generalization of Venter and Maxwell’s formula is presented in the univariate 

section of this paper. Considerations for determining sample size in a multivariate analysis are 

presented in the multivariate section. 

In addition to requiring fewer subjects than between-subjects designs, repeated measures 

designs provide greater precision since subjects serve as their own control (Stevens, 2002). 

Because comparisons in the repeated-measures designs are made within-subjects, variability in 

individual differences between-subjects is removed from the error term (Maxwell & Delaney, 

2004). Figure 1 illustrates this point. In the repeated measures design, the error term (SSRes) does 

not include the variable among individuals (SSI) as its counterpart (SSW) does in the between-

subjects design. As the variance among individuals is partitioned out of the error term, repeated 

measures designs are much more powerful than completely randomized designs (Stevens, 2002) 

and most likely result in a larger eta-squared (K. Roberts, personal communication, July 5, 

2004).  

<Insert Figure 1 about here> 

Disadvantages 

Tanguma (1999) identified three disadvantages of repeated measures design: (a) practice 

effects, (b) differential carryover effects, and (c) the potential for violations of statistical 

assumptions. Descriptions of the first two disadvantages and techniques for management are 

discussed. As conforming to the underlying statistical assumptions is a critical issue for all 

research designs (Hinkle, Wiersma, & Jurs, 2003), such issues are reserved to a subsequent 

section of the paper devoted to the subject. 

Practice effects 

 Practice effects occur when subjects change systematically during the course of an 

experiment (Tanguma, 1999). Such changes may involve a positive or negative effect (Lewis, 

1993).  

In the case of education, a positive practice effect may indicate an improvement in 

subjects’ knowledge, skills, or attitudes. However, in lieu of a learning program being 

responsible for the change, the improvement may be an artifact of the participants being retested 

using the same or similar instrumentation (Gall, Gall, & Borg, 2003). A technique to manage 

practice effects is to integrate a control group into the repeated measures design since the re-

testing effect should manifest itself equally in the control and the experimental group (Campbell 

& Stanley, 1963).  

Tanguma(1999) indicated that a negative practice effect may result from fatigue or 

boredom. He recommended that researchers lengthen the rest period between measurement 

occasions to manage fatigue and provide incentives as a technique to motivate participants 

throughout the course of the experiment. 

Counterbalancing is also identified as a technique to manage practice effects (Lamb, 

2003; Maxwell & Delaney, 2004; Tanguma, 1999; Wells, 1998). However, counterbalancing is 

most appropriate for designs where subjects are observed in different treatment conditions 

(Maxwell & Delaney) as counterbalancing is a way of ordering treatments so that each treatment 

is administered an equal number of times first, second, third, and so on, in particular sequences 

of conditions given to different subjects (Tanguma) . In the case of evaluating the effects of a 

learning program, participants are usually subjected to one treatment and then observed 
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longitudinally over time (Kirkpatrick & Kirkpatrick, 2006). Counterbalancing therefore would 

not be an appropriate technique to manage the practice order effects when measuring participants 

using the traditional occasions (e.g., pre, post, retro, and follow-up). 

Differential carryover effects 

 An artifact of counterbalancing may be differential carryover effects. “Differential 

carryover effect occurs when the carryover effect of Treatment Condition 1 onto Treatment 

Condition 2 is different from the carryover effect of Treatment Condition 2 onto Treatment 

Condition 1” (Maxwell & Delaney, 2004, p. 556). Tanguma (1999) asserted that a possible 

solution to differential carryover effects is providing participants sufficient time between 

treatments so that the treatment condition dissipates completely from the subjects’ system. 

Maxwell and Delany disagree and assert that a within-subjects design should be abandoned if 

differential carryover effect is a potential threat to validity. For the typical learning program 

evaluation, differential carryover effects is not an issue since implementing a counterbalanced 

design is not appropriate for reasons previously stated. 

 

Statistical Assumptions 

 

Stevens (2002) identified three assumptions for a single-group repeated measures 

analysis: (a) independence of observations, (b) multivariate normality, and (c) sphericity. Of the 

three assumptions, the first two apply to the multivariate approach while all three apply to the 

univariate approach. 

Independence of observations 

 Violation of independence of observations can lead to increased Type I error rate (Hinkle, 

Wiersma, & Jurs, 2003). While this assumption is typically met through random selection (Gall, 

Gall, & Borg, 2003), learning programs are usually evaluated with intact groups. The interaction 

of the group may affect the scores of the members resulting in correlated observations (Lamb, 

2003). Correlated observations can cause an overestimation of the true probability and is 

resolved by testing at a more stringent level of significance (Stevens, 2002). 

Multivariate normality 

 The properties of ANOVA and MANOVA that make them robust to violations of 

multivariate normality carry over to repeated measures designs (Stevens, 2002). However, 

statistical tests of sphericity are not robust to the assumption of multivariate normality (Olejnik 

& Huberty, 1993). In the absence of multivariate normality, statistical tests of sphericity may 

indicate heterogeneity of variance between measurement occasions when they should fail to 

reject the null hypothesis (Minke, 1997). See Henson (1999) for techniques to assess multivariate 

normality. 

Sphericity 

 Testing for Sphericity. Simply stated, the sphericity assumption is met when the variance 

at each measurement occasion is equal (K. Roberts, personal communication, July 5, 2004). 

Girden (1992) identified two techniques to test for sphericity: (a) examining variances of 

differences between all pairs of measurement occasions and (b) examining the matrix of 

orthonormal contrasts. 

Variances of Differences between Pairs of Measurement Occasions. The variance of 

differences between two measurement occasions can be computed using the following formula 

(Girden, 1992): 

 ABBABA σσσσ 2222 −+=−       (2) 
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where σ
2

A is the variance of a set of scores under measurement occasion A, σ
2

B is the variance of 

a set of scores under measurement occasion B, and σ
2

AB is the covariance of the two sets of 

scores. The more direct way of determining variance between two occasions is to compute the 

variance of the difference scores (Girden). Using either technique, sphericity is met if the 

variances between all pairs of measurement occasions are equal (Tanguma, 1999).   

Using the variance-covariance information in Table 3 based on the heuristic data in Table 

2, σ
2

A-B = 79.817, σ
2

A-C = 233.635, σ
2

A-D = 91.273, σ
2

B-C = 163.636, σ
2

B-D = 111.272, σ
2

C-D = 

59.818. Table 4 illustrates that the same variances are computed when using difference scores. 

For the data set identified in Table 2, the sphericity assumption is not met. 

<Insert Table 2 about here> 

<Insert Table 3 about here> 

<Insert Table 4 about here> 

 

Matrix of Orthonormal Contrasts 

 Girden (1992) and Stevens (2002) asserted that sphericity is also said to exist if: 

ICC
T 2σ=∑       (3) 

where C is a matrix of (k - 1) orthogonal contrasts, C
T
 is the transpose of C, ∑ is the variance-

covariance matrix, and I is an identity matrix. Multiplying the matrix of orthogonal contrasts 

identified in Table 5, its transpose (Table 6), and the variance-covariance matrix for the data in 

Table 2 (Table 3) results in the covariance matrix of transformed variables depicted in Table 7. 

For the dataset illustrated, the sphericity assumption is not met as the covariance matrix for the 

transformed variables does not have equal variances on the diagonal (Stevens, 2002). 

<Insert Table 5 about here> 

<Insert Table 6 about here> 

<Insert Table 7 about here> 

 

Mauchly’s Sphericity Test. Maxwell and Delaney (2004) highlighted that while sphericity 

tests such as the techniques outlined by Girden (1992) indicate variance inequalities in the 

sample, the sphericity assumption is only violated if it holds in the population as well. The 

authors recognized that even if sample variances are unequal, such inequalities might simply 

reflect sampling error. Therefore, they recommended that Mauchly’s sphericity test (i.e., 

Mauchly’s W) be used to test the null hypothesis that the homogeneity condition holds in the 

population.  

While Mauchly’s W has limitations in behavioral science research (including the analysis 

of learning program outcomes) due to its sensitivity to multivariate normality (Stevens, 2002), it 

is presented here since the results of the test are automatically generated in software packages 

(e.g., SPSS 14.0 for Windows) that conduct repeated measures analyses. Furthermore, studies 

conducted by Huynh and Mandeville (as cited in Keselman, Rogan, Mendoza, & Breen, 1980) 

found that for short-tailed distributions, the test basically maintains the true rate of Type I error 

below the level of significance alpha.   

Figure 2 depicts the results for the Mauchly’s test for the dataset represented in Table 2. 

The results are interpreted the same way as Levene’s test for homogeneity of variance in 

ANOVA. If the p-calc value generated is greater than or equal to the p-crit value defined by the 

researcher, then homogeneity of variance is assumed. Otherwise, the sphericity assumption is not 

met. In the example provided, Mauchly’s test indicates that the heterogeneity of variance 

between measurement occasions is statistically significant at the .05 alpha level (p = .018).  
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<Insert Figure 2 about here> 

 

Managing Violations to Sphericity. If the sphericity assumption is not met, the F ratio 

generated by the univariate repeated measures analysis is positively biased, rejecting falsely too 

often (Maxwell & Delaney, 2004). For example, if the alpha level is set at .05 and the sphericity 

assumption is not, univariate repeated measures analyses may falsely reject the null hypothesis 

10% or 15% of the time (Stevens, 2002). To adjust for the positive bias, the degrees of freedom 

for the repeated measures F test may be corrected using one of three adjustments: (a) 

Greenhouse-Geisser, (b) Huynh-Feldt, and (c) Lower-bound. However, it is important to note 

that while the adjusted tests provide better control for Type I error rate, they are only 

approximate (Maxwell & Delaney).  

The Greenhouse-Geiser formula shown below results in a parameter (
∧

ε ) that identifies 

the extent to which the covariance matrix deviates from sphericity (Stevens, 2002): 

∑∑ ∑ +−−

−

))(.)2())((1(

)(
2

..

222

22

EaEaEa

EEa

jjk

jj
   (4) 

where Ejk is the element in row j and column k of the sample covariance matrix, jjE is the mean 

of variances along the diagonal in the sample covariance matrix, .jE  is the mean of all entries in 

j
th 

row of the sample covariance matrix, ..E is the mean of all entries in the sample covariance 

matrix, and a is the number of measurement occasions. The resulting parameter is used to correct 

the degrees of freedom for the measurement occasion and error term. For the dataset depicted in 

Table 2, 
∧

ε  is .610. Applying the 
∧

ε  to the unadjusted degrees of freedom for the measurement 

occasion ((a – 1) = 3) and the error term ((n – 1) * (a – 1) = 33) results in corrected degrees of 

freedom of 1.820 and 20.115, respectively.  

The Huynh-Feld formula results in a parameter (
~

ε ) that identifies the extent to which the 

covariance matrix deviates from sphericity (Stevens, 2002): 

))1(1)(1(

2)1(
∧

∧

−−−−

−−

ε

ε

ana

an
    (5) 

where n is the number of subjects, a is the number of measurement occasions, and 
∧

ε  is the 

Greenhouse-Geisser adjustment. The resulting parameter is used to correct the degrees of 

freedom for the measurement occasion and error term. For the dataset depicted in Table 2, 
~

ε  is 

.725. Applying the 
~

ε  to the degrees of freedom for the measurement occasion and the error term 

results in corrected degrees of freedom of 2.175 and 23.920, respectively.  

The lower-bound adjustment simply sets the degrees of freedom for the measurement 

occasion to one and the degrees of freedom for the error term to (n - 1). The lower-bound 

adjustment suggests that no matter how badly the homogeneity assumption is violated, the 

largest possible critical F value needed requires one and (n – 1) degrees of freedom (Maxwell & 

Delaney, 2004). 

Figure 3 illustrates the associated effect on the p-value for each of the three adjustments. 

Of the three techniques, the Greenhouse-Geiser formula provides a moderate correction, the 



Research in Higher Education Journal 

Evaluating Performance, Page 7 

 

Huynh-Feld is the least conservative, and the lower-bound adjustment is the most conservative. 

The Greenhouse-Geiser formula tends to underestimate ε , while the Huyn-Feld adjustment 

tends to overestimate ε  (Stevens, 2002). Therefore, Stevens recommended that in lieu of using 

any of these three adjustments directly that researchers use the average of the Greenhouse-

Geisser and Huyn-Feld adjustments in order to correct the degrees of freedom for the repeated 

measures F test. Alternatively, he indicated that researchers choose the Greenhouse-Geisser test 

to be somewhat conservative. 

<Insert Figure 3 about here> 

 

Univariate 

 

In presenting the univariate approach to repeated measures, the following tasks are 

considered: (a) calculating sample size, (b) conducting the omnibus test, (c) computing effect 

size, (d) analyzing contrasts, and (e) reporting results. The topics are presented in approximate 

procedural order. 

Calculating Sample Size 

 Although Cohen’s classical text (1988) on power analysis provides power tables for a 

variety of situations, it does not provide tables for repeated measures. However, formulas for 

determining the appropriate sample size for a single group repeated measures design can be 

derived after first determining the sample size needed for a between-subjects design (Stevens, 

2002). The following is one such formula (Maxwell & Delaney, 2004): 

NW = NB (1 – ρ)/a      (6) 

where NW equals the sample size for the within-subjects design, NB is the sample size for the 

between-subjects design, ρ is the average correlation for the subjects’ responses to all 

measurement occasions, and a is the number of measurement occasions. It is important to note 

that the formula relies heavily on sphericity. In cases where the sphericity assumption is not met, 

researchers are directed to Elashoff (as cited in Maxwell & Delaney, 2004). 

Conducting Omnibus Test 

 The univariate repeated measures omnibus test for a single group compares an F-calc to 

an F-crit similar to a between-subjects ANOVA. However, the difference between the two 

approaches relates to variation among individuals: First, the denominator of the F-calc (error 

term) excludes the variation among individuals. Second, the degrees of freedom for the error 

term excludes the degrees of freedom associated with individuals. Table 8 outlines the formulas 

for computing the repeated measures F-calc. Table 9 depicts their use based on the data 

identified in Table 2 assuming that the sphericity assumption has been met. 

<Insert Table 8 about here> 

<Insert Table 9 about here> 

The univariate technique for conducting a repeated measures omnibus test for a single 

group can also be conducted using a statistical software package. Figure 4 identifies the SPSS 

code to conduct a repeated measure test for the data identified in Table 2. Figure 5 relates 

relevant output to an ANOVA summary table consistent with the information provided in Table 

9. 

<Insert Figure 4 about here> 

<Insert Figure 5 about here> 

 

Computing Effect Size 
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In addition to determining the statistical significance of a univariate repeated measures 

design, it is also important to analyze the practical significance of the test (Henson, in press). 

This can be accomplished by computing omega squared ( 2ω ). The formula for 2ω in one-way 

within-subjects designs based on the univariate approach is as follows (Maxwell & Delaney, 

2004): 

sindividualtotal

erroroccasions

MSSS

MSMSk

+

−−
=

))(1(2ω       (7) 

where k equals the number of measurement occaions, MS denotes mean square, and SS denotes 

sums of squares. Applying these formulas to the data in Table 2 results in an 2ω of .0377, 

indicating that the measurement occasion accounted for 3.77% of the variance in the dependent 

variable. 

Analyzing Contrasts 

In addition or in lieu of conducting a univariate repeated measures omnibus test (Oljenik 

& Huberty, 1993), researchers may want to analyze specific means differences or conduct trend 

analyses. In either case, this is accomplished by testing contrasts. The univariate formula for 

testing contrasts is as follows (Maxwell & Delaney, 2004): 

errorcalc MSDnF /2=        (8) 

where n equals the number of subjects, D is the transformed variable resulting from applying the 

contrasts to the original data, and MSerror is the pooled average error term generated by the 

omnibus test. As the univariate formula employs a pooled error term, it relies heavily on the 

sphericity assumption. If the assumption is not met, MSerror should be replaced with an individual 

error term. Testing contrasts with a separate variance estimate approach is consistent with 

multivariate analyses. Therefore, its formula is outlined in the multivariate section. 

To illustrate the process of conducting a trend analysis, a contrast matrix is identified in 

Table 10. Applying the contrast matrix elements to the data in Table 2 results in a set of 

transformed variables identified in Table 11. Applying the formulas to the transformed variables 

indicates that the linear and quadratic trends are not statistically significant (Flinear(1,11) = 3.19; p 

> .05 and Fquadratic(1,11) = .20, p > .05). However, the cubic trend is statistically significant 

(Fcubic(1,11) = 5.69; p < .05). 

<Insert Table 10 about here> 

<Insert Table 11 about here> 

Statistical software packages also report the results of polynomial trends as a byproduct 

of conducting a repeated measures analysis. Figure 6 outlines the relevant trend analysis output 

generated by SPSS for the data in Table 2. However, SPSS employs a separate variance estimate 

approach in lieu of the pooled error term. Therefore, the F values generated by SPSS are 

different than the hand calculations previously noted (Flinear (1,11) = 2.475; p = .144; Fquadratic 

(1,11) = .219; p = .649; Fcubic(1,11) = 7.066; p = .022). 

<Insert Figure 6 about here> 

Reporting Results 

In addition to reporting the ANOVA summary table (as depicted in Table 9 and Figure 

5), researchers need to report on results of a priori tests, null hypothesis tests, effect size 

calculations, and post-hoc analyses (Henson, in press; Ojenick & Huberty, 1993). The following 

provides an example write-up of the results of the tests conducted for the data in Table 2. The 

data obtained from the four points of measurement lacked sphericity (Mauchly’s W = .034; p = 

.018). Therefore, the Greenhouse-Geisser adjustment was employed in analyzing the repeated 
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measures (
∧

ε  = .610). We fail to reject the null hypothesis that the amount of perceived 

knowledge measured at four different points of time relative to a learning intervention are equal 

(F(1.829, 20.115) = 3.027, p=.064). As indicated by the univariate 2ω (Maxwell & Delaney, 

2004), occasion accounted for 3.77% of the variance in perceived knowledge. Trend analysis 

indicated that the cubic trend was statistically significant (F(1,11) = 7.066, p = .022).  

 

Multivariate 

 

In presenting the multivariate approach to repeated measures, the following tasks are 

considered: (a) calculating sample size, (b) conducting the omnibus test, (c) computing effect 

size, (d) analyzing contrasts, and (e) reporting results. The topics are presented in approximate 

procedural order. 

Calculating Sample Size 

Maxwell and Delaney (2004) outlined sample size tables for conducing repeated 

measures analyses using the multivariate approach (pp. 640-643). The authors indicated that the 

values were obtained by using a noncentrality parameter value of: 

)1(2/ min

22 ρδ −= nd      (9) 

where n equals the sample size, d is the expected effect, and minρ is the minimum correlation 

between measurement occasions. They further noted four patterns to the tables: First, the 

required number of subjects generally increases as the number of levels increases. Second, the 

number of subjects increases as the level of desired power increases. Third, as d increases, the 

number of subjects needed decreases. Fourth, as minρ increases, the number of subjects decreases 

as higher correlations are indicative of greater consistency in subjects’ scores across 

measurement occasions making effects easier to detect. 

 When considering the sample size requirements for a multivariate test compared to a 

univariate test, the multivariate approach is less powerful in the presence of sphericity (Stevens, 

2002). Maxwell and Delaney (2004) also noted that all other things being equal, the multivariate 

approach loses power when compared to the univariate approach, as the number of subjects (n) 

decreases. They further asserted that the multivariate approach may be mathematically 

impossible when n is less than the number of levels (k) + 10. However, in cases where n is 

greater than k  + 10 and there is a large violation of sphericity (ε  < 0.7), the multivariate 

procedure is more powerful (Field, n. d.). 

Conducting Omnibus Test  

Hotelling’s T
2
 is consistently used (e.g., Girden, 1992; Stevens, 2002; Tanguma, 1999) as 

the multivariate statistic to analyze repeated measures. It is important to note that the 

multivariate analysis is not performed on the original scores but on the differences between 

adjacent measurements (Tanguma). Table 11 identifies the latent variables constructed for the 

data in Table 2.  

As the following formulas show, Hotelling’s T
2
 (formula 11) is analogous to the t statistic 

(formula 10) for dependent samples: 

ns

d
t

d /
2

2

2 =         (10) 

where d is the mean difference between two dependent samples and sd
2
 is the variance of 

difference scores, and n is the number of subjects. 
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ddd ySnyT
12 '

−
=        (11) 

where n is the number of subjects, y’d is the row vector of mean differences on the (k - 1) 

difference variables, Sd is the matrix of variances and covariances on the (k – 1) difference 

variables (Stevens, 2002).  

As depicted in Figure 7, T
2
 for the data in Table 2 is 8.21. Applying the following 

formula that converts T
2
 to an F statistic results in an Fcalc of 2.24: 

F = [(n - k + 1) / ((n - 1)*(k - 1))] T
2     

 (12) 

where n equals the number of subjects and k equals the number of measurement occasions. 

The resultant Fcalc is insufficient to reject the null hypothesis at the .05 alpha level with 3 (k – 1) 

and 9 (n – k – 1) degrees of freedom. 

<Insert Figure 7 about here> 

The multivariate technique for conducting the repeated measures omnibus test for a 

single group can also be conducted using a statistical software package. Figure 8 identifies the 

SPSS code to conduct a multivariate repeated measures test for the data identified in Table 2. 

Figure 9 identifies relevant SPSS output. Note that the Hotelling trace coefficient (.74670) 

depicted in Figure 9 is a derivative of the T
2
 previously computed, where: 

Hotelling trace coefficient = T
2 

/(n - 1)    (13) 

where n equals the number of subjects. Also note that the F statistic identified (2.24) is the same 

as the Fcalc previously computed. The multivariate tests (Pillais, Hotellings, and Wilks) 

conducted also provide identical F statistics and p-values. Chen (2004) indicated that while the 

tests usually provide similar results, Wilks’ output should be chosen in the event the results are 

different. 

<Insert Figure 8 about here> 

<Insert Figure 9 about here> 

Analyzing Contrasts 

While the omnibus multivariate repeated measures test is performed on latent variables, 

the multivariate approach to testing contrasts is performed on the original scores. The process 

mirrors the univariate approach. The only exception is that the error term in the multivariate 

approach is an individual error term such that the multivariate formula for testing contrasts is as 

follows (Maxwell & Delaney, 2004): 

Dcalc SDnF
22 /=        (14) 

where n equals the number of subjects, D is the transformed variable resulting from applying the 

contrasts to the original data, S
2

D is the variance for the vector of transformed variables.  

Applying the multivariate formula to the transformed variables identified in Table 11 

indicates that the linear and quadratic trends are not statistically significant (Flinear(1,11) = 2.475; 

p > .05 and Fquadratic(1,11) = .219, p > .05). However, the cubic trend is statistically significant 

(Fcubic(1,11) = 7.066; p < .05). 

Statistical software packages also report the results of polynomial trends as a byproduct 

of conducting a multivariate repeated measures analysis. Figure 10 outlines relevant trend 

analysis output generated by SPSS MANOVA command for the data in Table 2. While the 

univariate analyses are based on t-values (i.e., tlinear = 1.572, tquadtratic = .467, tcubic = -2.658), the 

p-values generated (i.e., plinear = .144, pquadtratic = .649; pcubic = .022) are the same as those 

generated from the univariate F tests resulting from the General Linear Model (GLM) command 

(see Figure 6). This illustrates that SPSS employs a multivariate approach (i.e., an individual 

error term) when testing contrasts as a consequence of the GLM or the MANOVA command.  

<Insert Figure 10 about here> 
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Computing Effect Size 

In addition to determining the statistical significance of a multivariate repeated measures 

design, it is also important to analyze the practical significance of the test (Henson, in press). 

This can be accomplished by computing omega squared ( 2ω ). The formula for 2ω in one-way 

within-subjects designs based on the multivariate approach is as follows (Maxwell & Delaney, 

2004): 

Λ+

Λ
−=

errordf

n
12ω        (15) 

where n equals the number of subjects, df denotes degrees of freedom, and Λ equals the Wilks’ 

lambda value. Applying this formula to the multivariate results in Figure 9 results in an 2ω of 

.282, indicating that the measurement occasion accounted for 28.2% of the variance in the 

composite dependent variable. It is important to note that the multivariate omega squared is 

approximately seven times larger than the univariate omega squared for the same data. While 

this may appear to be an advantage of the multivariate approach, total variance is conceptualized 

differently between the two approaches. In particular, variation attributable to systematic 

individual differences is excluded from the total variance in the multivariate conceptualization 

(Maxwell & Delaney, 2004). Maxwell and Delaney asserted that since variability due to subjects 

should be included in the conceptualization of total variance, the univariate version of omega 

squared is preferred. 

Reporting Results 

The following provides an example write-up of the results of the multivariate approach to 

testing the repeated measures for the data in Table 2. Using Wilks’ lambda criteria, we fail to 

reject the null hypothesis that the composite amount of perceived knowledge measured at four 

different points of time relative to a learning intervention are equal (F(3,9) = 2.240, p=.153). As 

indicated by the univariate 2ω (Maxwell & Delaney, 2004), occasion accounted for 3.77% of the 

variance in perceived knowledge. Trend analysis indicated that the cubic trend was statistically 

significant (F(1,11) = 7.066, p = .022). 

 

Summary 

 

In considering the differences between the multivariate and univariate approaches to 

repeated measures analyses, Maxwell and Delaney noted four issues: (a) statistical assumptions, 

(b) tests of contrasts, (c) Type I error rate, and (d) Type II error rate (power). After summarizing 

the differences between the univariate and multivariate considerations for each of these subjects, 

this paper concludes by presenting guidelines to use when considering the two approaches. 

Statistical assumptions 

The distinction between the statistical assumptions required for the two approaches is 

sphericity. While the sphericity assumption is not applicable to the multivariate approach, the 

univariate approach assumes sphericity. In particular, the univariate approach to conducting 

omnibus tests, contrast tests, and sample size calculations requires sphericity. 

Tests of Contrasts  

Testing contrasts in the multivariate approach employs individual error terms, while the 

univariate approach employs a pooled error term. Therefore, the univariate approach to testing 

contrasts can provide misleading results when the sphericity assumption is violated. 

Type I Error Rate 
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Type I error rate can be two to three times higher than the nominal value in the univariate 

approach when sphericity is violated. While ε adjustments provide better control, they are not 

exact. The multivariate approach produces exact Type I error rates assuming that its statistical 

assumptions have been met (Maxwell & Delaney, 2004). 

Type II Error Rate 

Under the condition of sphericity, univariate tests provide better power than the 

multivariate approach. When sphericity is not met, neither test is uniformly more powerful than 

the other. However, as the degree of violation of sphericity increases, the power for the 

multivariate test increases.  

Guidelines 

Faced with the differences between the univariate and multivariate approaches, Field 

(n.d.) identified the following rules of thumb for choosing between univariate and multivariate 

approach to repeated measures analyses: (a) The multivariate approach is preferred when there is 

a large violation of sphericity (ε  < 0.7) and when n is greater than (k + 10). (b) The univariate 

approach is preferred when sphericity holds (ε  > 0.7) or when the sample size is small.  

Stevens (2002) provided a different guideline for considering a repeated measures 

approach. He indicated that if researchers can meet Maxwell and Delaney’s (2004) rule of thumb 

relating sample size to number of levels (n > k +10) that they conduct both the adjusted 

univariate and multivariate test and discern any differences in treatment effects. He further 

recommended that researchers following this advice set the experimentwise level of significance 

for each test to half of the overall desired alpha level. 

.  
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Table 1. 

Sample Size Required to Detect a Medium Difference between Two Means (power = .80) 

ρ Between-Subjects Within-Subjects 

0.0 128 64 

0.3 128 45 

0.5 128 32 

0.7 128 20 

Source: Maxwell & Delaney (2004, p. 562). 

 

Table 2. 

Heuristic Dataset 

Subject A B C D Mean 

1 96 108 122 110 109 

2 117 103 133 127 120 

3 107 96 107 106 104 

4 85 84 99 92 90 

5 125 118 116 125 121 

6 107 110 91 96 101 

7 128 129 128 123 127 

8 84 90 113 101 97 

9 104 84 88 100 94 

10 100 96 105 103 101 

11 114 105 112 105 109 

12 117 113 130 132 123 

Total 1284 1236 1344 1320  

Note: The grand mean (Mgrand) of the 48 scores is 108. 

 

Table 3. 

Variance-Covariance Matrix for Data in Table 2 

 A B C D 

A 200.545 154.364 97.455 143.636 

B 154.364 188.000 121.182 127.364 

C 97.455 121.182 218.000 168.091 

D 143.636 127.364 168.091 178.000 
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Table 4. 

Variance of Difference Scores for Data in Table 2 

Subject A-B A-C A-D B-C B-D C-D 

1 -12.000 -26.000 -14.000 -14.000 -2.000 12.000 

2 14.000 -16.000 -10.000 -30.000 -24.000 6.000 

3 11.000 0.000 1.000 -11.000 -10.000 1.000 

4 1.000 -14.000 -7.000 -15.000 -8.000 7.000 

5 7.000 9.000 0.000 2.000 -7.000 -9.000 

6 -3.000 16.000 11.000 19.000 14.000 -5.000 

7 -1.000 0.000 5.000 1.000 6.000 5.000 

8 -6.000 -29.000 -17.000 -23.000 -11.000 12.000 

9 20.000 16.000 4.000 -4.000 -16.000 -12.000 

10 4.000 -5.000 -3.000 -9.000 -7.000 2.000 

11 9.000 2.000 9.000 -7.000 0.000 7.000 

12 4.000 -13.000 -15.000 -17.000 -19.000 -2.000 

Variance 79.818 223.636 91.273 163.636 111.273 59.818 

 

Table 5. 

Matrix of Orthonormal Contrasts for Data in Table 2 

Occasion C1 C2 C3 

A .707 .408 .289 

B -.707 .408 .289 

C .000 -.816 .289 

D .000 .000 -.866 

 

Table 6. 

Transpose of Matrix identified in Table 5  

Occasion A B C D 

C1 .707 -.707 .000 .000 

C2 .408 .408 -.816 .000 

C3 .289 .289 .289 -.866 

 

Table 7. 

Covariance Matrix of Transformed Variables for Data in Table 2 

 T1 T2 T3 

T1 39.898 17.308 -12.248 

T2 17.307 115.649 28.060 

T3 -12.248 28.060 26.675 
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Table 8. 

Formulas for Conducting the Repeated Measures Omnibus Test 

Source SS df MS F 

Occasions ∑(T
2
/n)-(G

2
/N) k-1 SSoccasions /df occasions MSoccasions /MSerror 

 

Individuals ∑k(Msubject-Mgrand)
2
 n-1 SSindividuals /dfindividuals   

 

 

Error SStotal - SSindividuals –  

SSoccasions 

 

(k-1)(n-1) SSerror /dferror  

Total ∑X
2
-(G

2
/N) N-1   

Note: T = sum of the test scores for each particular test, G = sum of all the scores; ∑X
2
 = sum of 

all squared scores; N = number of scores in the entire experiment; Msubject = mean of each 

individual’s scores; Mgrand = grand mean of all scores; n = number of individuals; k = number of 

occasions 

 

Table 9. 

Repeated Measures ANOVA Summary Table and Related Computations for Data in Table 2 

Source SS df MS F 

Individuals 4*[(109-108)
2
 + (120-108)

 2
 + (104-108)

 2
 + 

(90-108)
 2

 + (121-108)
 2

 + (101-108)
 2

 + 

(127-108)
 2

 + (97-108)
 2

 + (94-108)
 2

 +  

(101-108)
 2

 +  (109-108)
 2

 + (123-108)
 2

] = 

6624 

12-1=  

11 

602.18   

Occasions [(1284
2
/12) + (1236

2
/12)+ (1344

2
/12) + 

(1320
2
/12)] – (5,184

2
/48) =  

552  

4-1=  

3 

184.00 3.03 

Error 9182 – 6624 – 552 =  

2006 

(4-1)*(12-1)=  

33 

60.79  

Total 569054 – (5184
2
/48) =  

9182  

48-1 =  

47 

  

Note: F-crit (3,33) ~= 2.84; therefore, the null hypothesis is rejected at the .05 alpha level. 

 

Table 10. 

Matrix of Orthonormal Contrasts to Analyze Polynomial Trends for Data in Table 2 

 Contrasts 

Measurement Linear  Quadratic  Cubic  

A -0.671 0.500 -0.224 

B -0.224 -0.500 0.671 

C 0.224 -0.500 -0.671 

D 0.671 0.500 -.224 
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Table 11. 

Transformed Variables and Latent Variables based on Data in  Table 2 

Subject Linear Quadratic Cubic A-B B-C C-D 

1 12.52 -12.00 -6.26 -12 -14 12 

2 13.42 4.00 -17.89 14 -30 6 

3 1.79 5.00 -7.60 11 -11 1 

4 8.05 -3.00 -8.50 1 -15 7 

5 -0.45 8.00 1.34 7 2 -9 

6 -11.63 1.00 10.29 -3 19 -5 

7 -3.58 -3.00 -0.45 -1 1 5 

8 16.55 -9.00 -11.63 -6 -23 12 

9 -1.79 16.00 -3.58 20 -4 -12 

10 4.02 1.00 -5.37 4 -9 2 

11 -4.47 1.00 -6.71 9 -7 7 

12 13.86 3.00 -8.05 4 -17 -2 

Mean 4.02 1.00 -5.37 4 -9 2 

Variance 78.56 54.91 48.92    

 

 
Figure 1. Comparison of Sum of Squares Partitioning between Designs (K. Roberts, personal 

communication, July 5, 2004).

Independent measures design 
SST = SSB + SSW 

In repeated measures design 
SST = SSI + SSo + SSRes 
 

SST 

SSB 

SST SSRes 

SSO 

SSI 

SSB – variation 
between 
treatments 
 
SSW – variation 
within treatments 
 
SSI - variation 
among 
individuals 
 
SSo - variation 
among occasions 
 
SSRes - residual 
variation or error 
 
SST - total 
variance 

 

SSW 
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Mauchly's Test of Sphericity(b) 

 
Measure: MEASURE_1  

Within Subjects 
Effect 

Mauchly's 
W 

Approx. Chi-
Square df Sig. 

Epsilon(a) 

Greenhouse-
Geisser 

Huynh-
Feldt 

Lower-
bound 

occassion .243 13.768 5 .018 .610 .725 .333 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed 
in the Tests of Within-Subjects Effects table. 
b  Design: Intercept  
 Within Subjects Design: occassion 

Figure 2. Results of Mauchly’s Test of Sphericity for Data in Table 2. 

 Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   
Type III Sum 
of Squares df Mean Square F Sig. 

occassion Sphericity Assumed 552.000 3 184.000 3.027 .043 

Greenhouse-Geisser 552.000 1.829 301.865 3.027 .075 

Huynh-Feldt 552.000 2.175 253.846 3.027 .064 

Lower-bound 552.000 1.000 552.000 3.027 .110 

Error(occassion) Sphericity Assumed 2006.000 33 60.788     

Greenhouse-Geisser 2006.000 20.115 99.727     

Huynh-Feldt 2006.000 23.920 83.863     

Lower-bound 2006.000 11.000 182.364     

Figure 3. Univariate F Test Results for Data in Table 2. 

GLM 
 A B C D 
  /WSFACTOR = occassion 4 Polynomial 
  /METHOD = SSTYPE(3) 
  /CRITERIA = ALPHA(.05) 
  /WSDESIGN = occassion . 

Figure 4. SPSS Code to Conduct Repeated Measures Analyses for Data in Table 2. 
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Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   
Type III Sum 
of Squares df Mean Square F Sig. 

occassion Sphericity Assumed 552.000 3 184.000 3.027 .043 

Greenhouse-Geisser 552.000 1.829 301.865 3.027 .075 

Huynh-Feldt 552.000 2.175 253.846 3.027 .064 

Lower-bound 552.000 1.000 552.000 3.027 .110 

Error(occassion) Sphericity Assumed 2006.000 33 60.788     

Greenhouse-Geisser 2006.000 20.115 99.727     

Huynh-Feldt 2006.000 23.920 83.863     

Lower-bound 2006.000 11.000 182.364     

 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Intercept 559872.000 1 559872.000 929.739 .000 

Error 6624.000 11 602.182     

 

Source SS df MS F p 

Individuals 6624   11 602.18    

Occasions 552   3 184.00 3.03 .043 

Error 2006   33 60.79   

Total 9182   47    

Figure 5. Relevant Univariate SPSS Output and ANOVA Summary Table for Data in Table 2. 

Tests of Within-Subjects Contrasts 

 
Measure: MEASURE_1  

Source factor1 
Type III Sum 
of Squares df Mean Square F Sig. 

factor1 Linear 194.400 1 194.400 2.475 .144 

Quadratic 12.000 1 12.000 .219 .649 

Cubic 345.600 1 345.600 7.066 .022 

Error(factor1) Linear 864.000 11 78.545     

Quadratic 604.000 11 54.909     

Cubic 538.000 11 48.909     

Figure 6. Trend Analysis SPSS Output (GLM command) for Data in Table 2. 
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T

2 =  12 4 -9 2 79.82 -9.91 -40.00 4  
   -9.91 163.64 -56.09 -9  
   -40.00 -56.09 59.82 2  
        

= 8.21  

Figure 7. T
2
 Computations for Latent Variables in Table 12. 

MANOVA A B C D 
  /WSFACTORS=Measure(4) 
 /CONTRAST(Measure)=POLYNOMIAL 
 /PRINT= SIGNIF(AVERF) TRANSFORM. 

Figure 8. SPSS Code to Conduct Multivariate Repeated Measures Analyses for Data in Table 2. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

EFFECT .. MEASURE 

 Multivariate Tests of Significance (S = 1, M = 1/2, N = 3 1/2) 

Test Name       Value    Exact F Hypoth. DF   Error DF  Sig. of F 

Pillais          .42749    2.24010       3.00       9.00       .153 

 Hotellings       .74670    2.24010       3.00       9.00       .153 

 Wilks            .57251    2.24010       3.00       9.00       .153 

 Roys             .42749 

 Note.. F statistics are exact. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Figure 9. Multivariate Repeated Measures SPSS Output for Data in Table 2. 

Estimates for T2 

 --- Individual univariate .9500 confidence intervals 

MEASURE 

  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 

        1   4.02492236    2.55841    1.57321     .14397   -1.60610    9.65594 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 Estimates for T3 

 --- Individual univariate .9500 confidence intervals 

MEASURE 

  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 

        1   1.00000000    2.13910     .46749     .64928   -3.70813    5.70813 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

 Estimates for T4 

 --- Individual univariate .9500 confidence intervals 

MEASURE 

  Parameter     Coeff.  Std. Err.    t-Value     Sig. t Lower -95%  CL- Upper 

        1   -5.3665631    2.01885   -2.65823     .02226   -9.81002    -.92310 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Figure 10. Trend Analysis SPSS Output (MANOVA command) for Data in Table 2. 


